华为副董事长、轮值董事长徐直军做主题演讲
2024年4月17日,第21届华为分析师大会在深圳开幕。本届大会以“全面智能化,跃升数智生产力”为主题,和全球500多名分析师、智库机构等共同探讨面向智能时代的前沿趋势、产业发展方向、行业数智化创新应用话题。华为副董事长、轮值董事长徐直军在大会上发表了“全面智能化之路”的主题演讲。
徐直军介绍了2024年华为的关键战略,重点阐述了 “抓住智能化战略机遇,推进全面智能化”战略落地的关键举措。全面智能化战略一方面指为人工智能关键技术发展,尤其是大模型训练和推理提供可持续的算力,构建共赢的生态;另一方面是用AI增强华为产品和解决方案的竞争力,包括:以昇腾云服务与盘古大模型使能行业智能化,打造自动驾驶网络革命性改变通信网络运维模式,打造自动驾驶解决方案最终实现无人驾驶,基于盘古大模型打造超级智慧助手小艺。与此同时,把AI引入华为内部管理持续提升运营效率,投资AI基础研究推动人工智能持续创新,积极参与全球AI治理,在产品设计中、产品发布前做好AI治理,也是战略落地必不可少的重点措施。
“自2018年10月发布华为AI战略及全栈全场景AI解决方案以来,我们一直在坚定地执行战略和打造AI解决方案,持续推进全面智能化。”徐直军强调。
华为战略研究院院长周红分享了面向智能时代的思考和展望。他表示,未来20年内,人类社会将加速走向全面智能时代。信息感知、通信、计算和控制将作为基石,驱使人类迈入新生活、新工作、新环境和新数字世界,而通用人工智能将是打开大门的钥匙。华为建议通过发展AI的多种智能;发展基于自治代理的开放智能系统;构建新计算模式、新架构、新部件;并从系统工程的角度来提升通用人工智能的准确性、适应性、创造性和效率。周红表示:“面向未来的科学假设和商业愿景,我们期待与合作伙伴一起加强开放和联合创新。我们比以往任何时候都更需要通过科学和技术来引领新突破。”
华为战略研究院院长周红发表演讲
《面向智能时代的思考和展望》
周 红
01
全面智能时代的四个突破
人类社会的每一轮发展都伴随着关键技术的突破。在过去的300多年,人类社会经历了三次工业革命。从机械化、电气化到信息化,人类社会的经济模式产生了巨大的变化。当前,我们有了更多的数据、更好的算法和更大的计算能力,第四次工业革命正在到来,创造了新的数字经济。从数字基础设施到产业应用与创新,它将改革我们的数字消费和生产、科学研究与技术创新以及我们的教育和文化。
未来10到20年,我认为人类社会将加速走向全面智能时代,我们将看到新型数学和物理计算的突破、新的清洁能源、新的信息通信,和新的智能将支持这些突破革命性的融合。6G和Al将被广泛使用,我们希望开发出高性能、用户负担得起且无处不在的算力和可再生能源。
我们正处于信息大爆发的时代,产生和使用着越来越多的数据。在中国,2023年平均每月移动宽带的流量达到26.5艾字节,比2013年的0.11艾字节增加大约240倍,其增速远超过2003至2013十年间的40倍增长。AI领域增长更快,2018年的大模型参数值约在1.17亿,2019年增长到15亿,2020年增长到1750亿,2023年达到1.8万亿,五年时间就增长了接近1.5万倍。我们认为,未来10年,来自应用侧需求的增长将牵引信息产业的巨大发展,使得通信能力将增加100甚至1,000倍,计算能力将增加1,000到10,000倍。然而,目前还没有足够强大的基础理论和先进技术来支撑这些发展,因此我们希望和合作伙伴加强开放和联合创新。
随着信息技术的迅速发展,未来的世界将会是什么样?根据与学术界、产业界广泛的交流,我们识别出面向未来新生活、新工作、新环境、新数字世界的四个重大突破。
❖ 首先是人的健康和成长。我用这款华为智能手表来检测喝咖啡、绿茶、红茶、白茶以及红酒、伏特加和白兰地对血压的影响。我发现几乎每次我只要喝了1盎司或差不多半两白兰地,15分钟后我的血压就会降低到理想水平。有了强大的可穿戴设备,我们可以更好地管理自己的健康。事实上,华为正在与很多医院和医学院合作,在627万名志愿者中,华为穿戴设备已经检测出超过2万例潜在的房颤风险,准确率约为94%,并且帮助用户建立了连接医生的快速通道。未来,越来越多的疾病可以通过基于Al计算的靶向药物治愈。随着AI应用和工具的普及,年轻一代将拥有比我们更强的创造力。
❖ 其次,未来将有越来越多的智能机器人,他们不仅能够提供服务,还将参与生产,帮助人们过上舒适和富足的生活。
❖ 第三,我们将建设可持续发展的环境以及更好的地面和太空城市。例如,华为正在与伙伴合作,在沙漠中部署光伏解决方案。两年前,光伏发电每度电成本约为1.6美分。未来,我们认为发电成本可能还会进一步降低。低空运输会得到大力的发展,将比我们传统的地面通行速度提升十倍以上。
❖ 最后,我们将看到虚实融合的数字世界广泛应用于我们的生活和生产中,如元宇宙、3D全息、数字孪生等。目前我们还有很大的差距,一部像《阿丽塔:战斗天使》这样的科幻电影,可能需要3万台服务器和4年的时间进行计算。
02
人工智能的三个挑战
信息感知、通信、计算和控制是实现这四大突破的基石,而通用人工智能将扮演关键角色。在通往通用人工智能的道路上有哪些重要挑战?我们根据实际应用,识别出三个挑战,包括认知偏差、性价比以及如何创造价值。
❖ 首先是认知偏差。比如,我们发现深度学习算法和大模型在视觉计算方面存在局限,在一些情况下对噪声、颜色、纹理、背景、组合和旋转敏感。我们不能理解,为什么熊猫加上一些肉眼不可见的噪声,就可能被认作长臂猿?我们不能接受停车标志上贴几个黑白小块,就可能被认为是限速45。大语言模型会存在偏见、缺乏概念和逻辑以及幻觉的挑战。大家知道中国有位叫周树人的著名作家,他的笔名叫鲁迅。我去年问一个大模型“鲁迅是周树人吗?”,大模型回答“不,周树人的真名是巴金”,这就是典型的幻觉;大模型能够回答出Tom Cruise的母亲是Mary Lee Pfeiffer,但与此同时却不能回答谁是Mary Lee Pfeiffer的儿子,这就是缺乏概念和逻辑。近期有多篇研究论文表明,在传统的学习方法和有限的训练数据下,单纯的大语言模型很难甚至无法真正学会四则运算,这方面还不如计算器。除此之外,大语言模型也很难理解和回答如何用天秤找出假币的问题。为了探索和扩展大语言模型和Scaling Law的极限,人们开始尝试有监督的微调(SFT)、逆向训练(RT)、检索增强生成(RAG)、Q*分步验证、混合专家(MOE)、思维链(COT)、代理和工具调用等新的想法。
❖ 如何提升性价比?尽管超级计算机的算力远超人脑,但在能效和成本方面都存在着巨大的挑战。目前,一台2,000万瓦高性能计算机可以提供大约1,000 PFLOPS的算力,而一个20瓦的人脑可以提供30 PFLOPS的算力,能效几乎是前者的30,000倍。在AI应用方面,目前一个大语言模型每天需要消耗近50万度电来回答近2亿个问题。试想一下:如果未来十年,我们需要1,000倍的算力,但无法显著提升能效,那几十座核电站可能都不足以满足这样一个耗电的单一功能大模型的需求。
❖ 如何创造价值?应用是AI的终极目标。我们需要基于基础模型开发各种基于行业和场景的模型、工具和生态,从而创造更多客户价值和更好的用户、伙伴和开发者体验。我认为,除了少数几个大型、非常昂贵的训练模型之外,广泛部署高效、低成本的中、小、微型推理模型,对于AI的普及应用更加重要和迫切。
03
应对挑战的四个建议
面对上述三个挑战,我们提出了四个建议,以提高准确性、适应性、创造性和效率。
❖ 第一个建议是发展多种智能。我认同Howard Gardner教授的看法。他认为人有多种智能,包括语言文字智能、自我认知智能、人际交互智能、视觉和空间计算智能、自然理解智能、音乐智能、运动智能和数理逻辑智能。我认为前三类智能非常重要,因为它们与人类社会的道德伦理、价值观和文化息息相关。我们必须确保人在环中,避免对我们的身体和精神的隐私和保密、安全和发展带来失控。我们应该考虑如何实施Isaac Asimov提出的机器人三定律。
从这张人脑示意图中可以看出,人脑有很多不同的区域,有不同的功能。语言文字智能在第三区和第七区,计划和决策在第一区,视觉和空间计算智能在第十区,而运动智能在第十一区。我认为这些分布式的异构智能可以帮助我们提高准确性和适应性。
❖ 第二个建议是发展基于自治代理的开放智能系统。我曾和Joseph Sifakis教授探讨过面向未来基于自治代理、开放的智能系统。该系统应包括三个重要部分。首先是感知和学习,除了从内外部环境获得信息外,还要从互联网、人类和其他模型获得信息。通过这一步,可以建立概念、特征、关系和事件之间的统计关联关系,形成经验模型。第二是加强从经验到理念的系统化和自动化抽象、验证与扩展。经验并不总是正确的,谎言讲一千遍也成不了真相。三是通过演绎、归纳、解因推理以及试错进行目标管理和规划,推动决策与行动。第一部分善于参考,第二部分善于监督,第三部分善于控制。基于这一开放的智能系统,我们可以发展世界模型,包括时间、地点、人、物、关系、事件以及真实世界运行规律和法则等信息。
❖ 第三个建议是构建新计算模式、新架构、新部件,提升效率。我们与数学家交流,探讨在AI计算领域面临的挑战。比如在视觉和空间计算领域,有些场景,比如自动驾驶,更关注前面汽车的轮廓,而不是颜色、纹理和图案。如果采用几何流形来表征,能不能实现比基于像素表征高100倍甚至1,000倍的计算效率?我们与生理学家交流,能不能把模型从96层简化到6层,就像人的大脑皮层一样,从而将效率提高15倍?我们与半导体专家讨论,能不能发展新型内存,而不是传统的DRAM和HBM,从而在Transformer计算中将数据读写效率提升100倍?此外,还有许多其他可能的突破方向,比如近似计算、模拟计算、存内计算、量子计算等。未来,这些技术有可能将计算效率提升100万倍。
❖ 第四个建议是从系统工程的角度来发展AI。除了商业模式、基础设施和法律法规之外,我们还应该考虑如何构建高质量的语料,创建更好的模型,设计更大规模的超节点集群。同时,我们需要重视开发高效易用的工程工具,发展生态,还要重视对创新人才的教育培养。
04
华为实现AI价值的两种方式
华为正在与伙伴一起构建全栈、全场景解决方案,为产业创造价值。AI技术可以帮助我们提高质量和安全性,如提升工业质检准确率、电力设施异常识别精度以及高速列车未知故障发现率。Al技术还有助于提升法务卷宗审查效率、提高销售转化率和提升药物设计和货品监控的效率。AI技术还可以帮助我们降低水泥制造和中央空调的成本和能耗。
在华为内部,AI解决方案广泛应用于研发、生产、供应链、销售与服务、用户体验与质量和集团管理等流程。比如在研发领域,我们将AI用于发展智能驾驶、智能座舱,也将其用于设计工具与装备的开发,从而帮助实现代码生成和测试验证效率提升50%;在生产领域,AI已经帮助将质检准确率提升至99%;在财经领域,AI帮助合同风险评审速度提升10倍。我们将自身经验与制造业客户分享,实现了1,000多个联合创新成果,其中超过30%用于核心生产系统和产品智能化升级。基于客户的行业知识和AI解决方案,我们在助力客户提升安全性、质量和用户体验的同时,实现了平均盈利能力提升18%。
在Al for Science领域,我们积极与学术界合作。2007年,Jim Gray教授提出了科学研究的四个范式。第一个范式是基于经验的研究,第二个范式是基于理论的研究,第三个范式是基于计算的研究,第四个是基于数据驱动的研究。如今,大模型可以帮助我们从超高维空间中抽象出统计相关性,在这方面比人类做得更好;AI计算速度在越来越多的领域超越人类。华为开发了微观尺度的盘古药物分子大模型,帮助药物设计效率提升了10倍,成功率提升了50%;在介观尺度上,盘古流体大模型帮助流体仿真速度提升20倍;在宏观尺度上,盘古气象大模型帮助提升天气预报速度10,000倍,准确性提升20%。将来,如果我们能将统计与相关关系、因果和形式关系以及随机关系整合起来,能不能推动形成基于AI的科学研究第五个范式?
随着越来越多的突破涌现,AI正在重塑我们的文明。对于未来,我们能做什么,我们应该做什么?我曾经参观过一个考古博物馆。我很难想象在4,000年前,已经发展出了如此繁荣的文明和如此多精美的艺术品。这些文明为何会衰落?历史学家Arnold Joseph Toynbee在《历史研究》一书中指出,一个文明的衰落的主要原因不是外敌入侵和天灾,而是其内部失去了创造力与分裂。文明面临的最大挑战是人类在人造环境中的自我奴役。如今,我们面临着战争的威胁、环境的污染、气候的危机、各种工作和学习的焦虑和内卷等。我们认为促进文明发展的最有效方式是将科技的进步转化为创造力,拓展知识和自由的边界,创造更加美好的生活、工作和环境。
05
怀揣的一个梦想
面向未来,我们仍面临诸多不确定性。华为希望通过茶思屋这个平台,与各界分享当今世界面临的难题以及我们面向未来的科学假设和商业愿景,我们期待与合作伙伴一起加强开放和联合创新。我们比以往任何时候都更需要通过科学和技术来引领突破,其重要性超越了传统的客户需求推动。
我们很难想象,300年前,工业革命还没有开始,30年前,GPRS数据套餐也还不存在。期待未来30年,我们能共同创造出高级智能,帮助我们管理更多的物质和能量,将人类文明的自由度从行星文明扩展到星际文明。就像菲尔兹奖奖章上那句话,“超越人类极限,做宇宙的主人”!
企业考察网文章,作者:标杆考察培训中心,如若转载,请注明出处:https://www.qykc.cn/11256.html